a2 United States Patent

US009058176B2

(10) Patent No.: US 9,058,176 B2

Jentsch et al. (45) Date of Patent: Jun. 16, 2015
(54) DOMAIN-SPECIFIC GENERATION OF (56) References Cited
PROGRAMMING INTERFACES FOR
BUSINESS OBJECTS U.S. PATENT DOCUMENTS
(75) Inventors: Frank Jentsch, Muehlhausen (DE); 6,023,578 A : 2/2000 Birsan etal.cc......... 717/105
Bare Said, Sankt-Leon-ROT (DE); 8,495,568 B2 7/2013 Ackerman 717/120
Frank Brunswig, Heidelberg (DE) * cited by examiner
(73) Assignee: SAP SE, Walldorf (DE)
Primary Examiner — Deric Ortiz
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — Brake Hughes Bellermann
patent is extended or adjusted under 35 LLP
U.S.C. 154(b) by 47 days.
(21) Appl. No.: 13/484,942 7) ABSTRACT
) A code generator may determine an object metadata model
(22) Filed: May 31, 2012 which defines structures and behaviors of objects adapted for
. L use in at least one software application, where the code gen-
(65) Prior Publication Data erator includes an object analyzer configured to determine at
US 2013/0326470 Al Dec. 5, 2013 least one object instance of the object metadata model, a
domain analyzer configured to determine a domain associ-
(51) Int.Cl. ated with the at least one object instance, and a template
GO6F 9/44 (2006.01) selector configured to select a domain-specific code template
GO6F 9/45 (2006.01) based on the domain. The code generator may generate a
(52) US.CL domain-specific application program interface (API) config-
CPC GOGF 8/35 (2013.01); GO6F 8/447 (2013.01); ured to facilitate interactions of the at least one object instance
’ GOGF 8/40 (2013.01’) during execution of the at least one software application,
(58) Field of Classification Search using the domain-specific code template.

None
See application file for complete search history.

17 Claims, 7 Drawing Sheets

Determine an object metadata model which defines structures
and behaviors of objects adapted for use in at least one ~202
software application

v

Determine at least one object instance of the object metadata

instance

model 204
Determine a domain associated with the at least one object 206

v

Select a domain-specific code template based on the domain |~—208

v

Generate a domain-specific application program interface (API)
configured to facilitate interactions of the at least one object [~_21¢
instance during execution of the at least one software
application, using the domain-specific code template

U.S. Patent

Jun. 16, 2015

Sheet 1 of 7

128 At least one
computing device

128A At least
one processor

128B Computer
readable storage
medium

US 9,058,176 B2

—
|

Business Object
Metadata

104

Domain-specific
Metadata
106

—_— —

108 Code Templates

Domain-specific
code templates

110

102 Code Generator

Object Analyzer
120

Domain Analyzer
132

sl -
112 Generated code

114
Domain -specific

Template Selector
124

generated code

126

116 Runtime

FIG. 1

Engine

118

Application Data

U.S. Patent Jun. 16, 2015 Sheet 2 of 7 US 9,058,176 B2

Determine an object metadata model which defines structures
and behaviors of objects adapted for use in at least one —~202
software application

v

Determine at least one object instance of the object metadata

model 204
Determine a domain associated with the at least one object L 206

instance

v

Select a domain-specific code template based on the domain |~208

v

Generate a domain-specific application program interface (API)
configured to facilitate interactions of the at least one object |~_21g
instance during execution of the at least one software
application, using the domain-specific code template

FIG. 2

U.S. Patent Jun. 16, 2015 Sheet 3 of 7 US 9,058,176 B2
306 | Object Name 4«— 302 Description 4— 304
> ¥ =N Business Object nodes
308 ~» [B) ROOT Root
310~» [@ SYSTEM MESSAGE_TYPE SystemMessageType

312~ p» [E) NODE

Node

»] Node Elements «—~_314
» O] Actions <~_31¢
» [Associations <~_31g
» D Queries 4_320
p [@] NODE_SYSTEM_MESSAGE_TYPE
322 ~5 p» [E] NODE_ELEMENT
324 —5 p [B] NODE_KEY
» [E] NODE_SPEC TYPE
p» [E) NODE_SPECIALIZATION
» [E) ACTION
326 —~5 p [@) ASSOCIATION
» [B] QUERY
p [E) DETERMINATION
p» [E) CONSISTENCY VALIDATION
» [B] STATUS VARIABLE
» [B] SAM_SCHEMA
» @) NODE_EXIT

NodeSystemMessageType
NodeElement

NodeKey
NodeSpecializationType
NodeSpecialization

Action <378
Association

Query

Determination «~_33
ConsistencyValidation X
StatusVariable 332
SAMSchema

NodeExit

FIG. 3

US 9,058,176 B2

Sheet 4 of 7

Jun. 16, 2015

U.S. Patent

v Old

<SojeIouab>

v

Jojeiauas) apo) Z07

<UOljB WO}

-Urewop sjeb>¢

LY~

al09ads

47 J
gL Anuno) wwm_Q 0Lt
919 uny swisnlpy wmm_\ON

JuawInooq Bununoooy wmm_t”.u\

Jauped ssauisng mwm_oN

)

sooeLIou| bulwwesboud
al108dg-ulewoq

10}

80t

60¥ GO¥ ~ _/ 10¥
<uolelsusb oy <UONBWIO|
[epow Og s10b6> o0ads
-urewop s1eb>
<UO paseqg>
Anunod 0g A 4 @

uny Juswisnlpy O

juawInooQ Bununoooy Og

[SPON-EISIN OF

Jaulled ssauisng Ogd

/

14%%

<]0 8oUB)SUI>

w1sAg Auojisoday elepeo

U.S. Patent Jun. 16, 2015 Sheet 5 of 7 US 9,058,176 B2

502

Object Name

Description

¥ @ FIA_ACCOUNTING_DOCUEMENT

AccountingDocument

» [Service Provider Class
[Service Provider Interface
[Business Object Nodes
] Process Component

[Extending BO

E ROOT

504

»
»
»
>
e /

Root

» [Node Elements
» [Associations
» [Queries

» [Ul Text

506 @) TextCollection.ROOT

Root

B 1TEM

ltem

>
N> p
»] Governance Supplement
» [KT Document

FIG. 5

U.S. Patent

602

Jun. 16, 2015 Sheet 6 of 7

US 9,058,176 B2

Object Name

Description

\4 @ FIA_FIXED_ASSET DEPR

FixedAssetDepreciationRun

» [Service Provider Class

» [Service Provider Interface
» [Business Object Nodes
» 3 Process Component

604 » [template BO
™ [v @ ROOT Root |
»] Node Elements
YA Actions
o« O ACTIVATE Activate
. @ADJUST_RESPONSIBLE_AGENT AdjustResponsibleAgentAnd
> @CREATE_WITH_REFERENCE CreateWithReference

608 » G CREATE WITH REF FOR CANC | CreateWithReferenceForCen
> o (& EXECUTE Execute

o & FLAG_AS OBSOLETE FlagAsObsolete
o ® REVOKE_OBSOLESCENCE RevokeQObsolescence
» & SCHEDULE_DIRECTLY ScheduleDirectly

»] Associations

» [Queries

» [Base node

» [S&AM Schemas

» [Status Variables

» @ DESCRIPTION Description

» [E) EXECUTION Execution

606 p @) LOG Log
™ Uy @) PARAMETERS Barameters

FIG. 6

U.S. Patent Jun. 16, 2015 Sheet 7 of 7

702

US 9,058,176 B2

Object Name

Description

v|@ FIND_CITY_T005

Country

» [Service Provider Class
» [Service Provider Interface
» [Business Object Nodes
704 » [Extending BO
> » [ROOT
¥) KT Document

Root

FIG. 7

US 9,058,176 B2

1
DOMAIN-SPECIFIC GENERATION OF
PROGRAMMING INTERFACES FOR
BUSINESS OBJECTS

TECHNICAL FIELD

This description relates to programming interfaces for
business objects.

BACKGROUND

Many software applications are constructed and executed
using discrete software objects, each of which may corre-
spond to a real world entity and/or functionality. Each such
software object may specify, for example, a type and content
of data to be used by the software object, as well as behaviors
of the software object in utilizing such data.

In particular examples of such model-driven implementa-
tions of software applications, business applications may be
implemented using business objects corresponding to speci-
fied business entities and/or related functionalities. For
example, business objects may be constructed which corre-
spond to large scale entities, such as corporate departments
(e.g., financial, human resources, or manufacturing), indi-
viduals (e.g., customers, employees, or business partners), or
low-level data containers (e.g., individual documents or data
tables).

In practice, such software objects, e.g., business objects,
may be constructed using a meta-model which defines meta-
data governing a manner in which each business object is
constructed. Then, since each object is constructed in accor-
dance with at least a subset of the overall meta-model, the
objects possess a high degree of interoperability, so that a
software developer may easily combine desired business
objects to thereby construct entire business applications.

Nonetheless, it may occur that one or more individual
business objects include certain characteristics which are out-
side of a context of the meta-model. Consequently, it may be
relatively more difficult to incorporate such business objects
into a business application in a desired fashion.

SUMMARY

According to one general aspect, a system may include
instructions recorded on a non-transitory computer readable
storage medium and executable by at least one processor. The
system may include a code generator configured to cause the
at least one processor to determine an object metadata model
which defines structures and behaviors of objects adapted for
use in at least one software application. The code generator
may include an object analyzer configured to determine at
least one object instance of the object metadata model, a
domain analyzer configured to determine a domain associ-
ated with the at least one object instance, and a template
selector configured to select a domain-specific code template
based on the domain. The code generator may be further
configured to cause the at least one processor to generate a
domain-specific application program interface (API) config-
ured to facilitate interactions of the at least one object instance
during execution of the at least one software application,
using the domain-specific code template.

According to another general aspect, a computer-imple-
mented method for causing at least one processor to execute
instructions recorded on a computer-readable storage
medium may include determining an object metadata model
which defines structures and behaviors of objects adapted for
use in at least one software application, determining at least

10

15

20

25

30

35

40

45

55

60

65

2

one object instance of the object metadata model, and deter-
mining a domain associated with the at least one object
instance. The method may further include selecting a domain-
specific code template based on the domain, and generating a
domain-specific application program interface (API) config-
ured to facilitate interactions of the at least one object instance
during execution of the at least one software application,
using the domain-specific code template.

According to another general aspect, a computer program
product tangibly embodied on a non-transitory computer-
readable medium may include instructions that, when
executed, may be configured to cause at least one processor to
determine an object metadata model which defines structures
and behaviors of objects adapted for use in at least one soft-
ware application, determine at least one object instance of the
object metadata model, and determine a domain associated
with the at least one object instance. The instructions, when
executed, may be further configured to select a domain-spe-
cific code template based on the domain, and generate a
domain-specific application program interface (API) config-
ured to facilitate interactions of the at least one object instance
during execution of the at least one software application,
using the domain-specific code template.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system for domain-specific
generation of programming interfaces for business objects.

FIG. 2 is a flowchart illustrating example operations of the
system of FIG. 1.

FIG. 3 illustrates a portion of a business object meta-
model.

FIG. 4 is a block diagram of a more detailed example
implementation of the system of FIG. 1.

FIG. 5 illustrates a portion of a business object meta-model
utilized in the example of FIG. 4.

FIG. 6 illustrates a portion of a business object meta-model
utilized in the example of FIG. 4.

FIG. 7 illustrates another example portion of a business
object meta-model utilized in the example of FIG. 4.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of a system 100 for domain-
specific generation of programming interfaces for business
objects. In the example of FIG. 1, a code generator 102 may
be configured to access business object metadata 104, along
with related domain-specific metadata 106. The code genera-
tor 102 may further utilize code templates 108 and domain-
specific code templates 110, respectively, in order to provide
generated code 112 and domain-specific generated code 114.
In this way, as described in detail below, the code generator
102 may be configured to enable a runtime engine 116 asso-
ciated with one or more software systems/applications to
utilize the metadata 104, 106 in conjunction with the gener-
ated code 112, 114, and thereby process application data 118
in a desired manner. More particularly, the code generator 102
enables such operations of the runtime engine 116 in a man-
ner which is automated and efficient, highly configurable
with respect to the various domains, and implementable in a
straightforward manner, without requiring significant techni-
cal knowledge on the part of a user of the code generator 102.

US 9,058,176 B2

3

In more detail, the business object metadata 104, by itself,
generally may represent or include the types of object meta-
data models referenced above, which may be utilized to
define permitted/required structures, content, and behaviors
of individual (or categories of) business objects. The use of
such metadata models, and objects defined thereby, enables
software developers and other users to work with a relatively
abstract, high-level view ofthe underlying program code, and
relaxes requirements on the software developers and other
users to have detailed knowledge regarding technical details
about actual implementations of infrastructure components.

In the examples described herein, the metadata 104 and
related metadata models are described in conjunction with
corresponding business objects. As is known, such business
objects may include, for example, account objects, business
partner objects, address objects, order objects and document
objects, to name a few examples. Additional examples of such
business objects are described in more detail below, and/or
would be apparent to one of skill in the art. Moreover, the
definition and use of such business objects may vary with
respect to different users of the system 100. In general, how-
ever, it may be appreciated that such business objects may
include virtually any business-related entity/operation which
a user of the system 100 may wish to represent in the context
of interactions with other business entities/operations in a
model-driven development environment. Even more gener-
ally, although the term business object is used herein for the
sake of example, it may be appreciated that the metadata 104
may be used to construct model-driven representations of
virtually any type of context and related software objects. For
example, such contexts may be related to educational, chari-
table, military, personal, or governmental contexts.

Nonetheless, for purposes of providing specific examples
for the sake of description and explanation, various examples
are provided herein in which the metadata 104 provides a
metadata model for various business objects. In particular, as
illustrated and described below with respect to FIGS. 3 and
5-7,thebusiness object metadata 104 may provide a metadata
model for various business objects and associated business
operations. In particular, examples are provided in which
various business objects include business objects for business
partners, accounting documents (e.g., sales order docu-
ments), mass data processing/adjustment runs, and business
configuration parameters.

As referenced above, the runtime engine 116 may be con-
figured to process relevant portions of business application
data 118, based on appropriate interpretations of relevant
objects defined by the business object metadata 104. In this
regard, the runtime engine 116 may work generically to pro-
cess many different types of business objects. In this way, the
system 100 may be utilized, e.g., to provide standardized
services, and provide for integration of generic components
with one another.

However, in many cases, a developer or other user of the
system 100 may have non-generic requirements for opera-
tions of the runtime engine 116, such as when a service or
application programming interface (API) of a specific busi-
ness object is required. By virtue of providing such object-
specific APIs, the code generator 102 may provide numerous
features and advantages. To give one example, by providing
such object-specific interfaces, the code generator 102 may
be utilized to improve transparency for software developers,
e.g., by offering various business object subcomponents as
specific classes or methods that may easily be utilized by the
software developer to obtain a desired result during opera-
tions of the runtime engine 116.

10

15

20

25

30

35

40

45

50

55

60

65

4

In the example of FIG. 1, such a result is illustrated and
described with respect to the generated code 112 that is pro-
vided by the code generator 102, utilizing the business object
metadata 104. In other words, the generated code 112 repre-
sents and includes APIs provided by the code generator 102,
which are object-specific, but which are consistent with, and
limited to, definitions, requirements, and other aspects of the
overall metadata model included in the business object meta-
data 104.

Thus, the system 100 of FIG. 1 provides an example of the
use of a business object meta-model of the business object
metadata 104 in conjunction with the runtime engine 116,
where the runtime engine 116 may represent the processing
of many different types of frameworks, systems, or other
applications or services (e.g., an enterprise services frame-
work). Through the use of corresponding business objects
governing structural and behavioral aspects, the system 100
provides for a uniform runtime behavior and contracts, using
the common business object meta-model for many different
categories of the business objects.

For example, such business object categories may include
master data objects (e.g., business objects for customers,
employees, and business partners), business transaction
documents (e.g., accounting documents, sales orders, or req-
uisition forms), mass data run objects (e.g., an adjustment run
object), and business configuration objects (e.g., country/
nation objects). Again, through the use of the common busi-
ness object meta-model, interactions and interfaces between
and among the various objects and categories of objects may
be standardized in a relatively generic, uniform manner.

In practice, however, and as referenced above, many busi-
ness objects (or groups of business objects) may have char-
acteristics, features, or content which are not explicitly cov-
ered as such within the governing business object meta-
model. Similarly, certain business objects (or groups of
objects) may have certain features or requirements associated
with optimal processing thereof, which would be unneces-
sary or suboptimal in the context of processing other ones of
the business objects.

Therefore, in the example of FIG. 1, the code generator 102
may be configured to identify such objects, or groups of
objects, and thereafter generate portions of the generated
code 112 which are specific thereto. In the context of the
present description, such code is referred to as the domain-
specific generated code 114.

In this context, it may be appreciated that the term domain,
by itself, may refer to individual contexts, settings, or arenas,
e.g., in the business realm, which share a common feature,
characteristic, or aspect. For example, in the business realm,
the term domain, by itself, may refer to any defined portion or
segment thereof, irrespective of the use of a system such as the
system 100 of FIG. 1. For example, in a conventional business
context, domain may be defined as including, e.g., a sales
domain, a manufacturing domain, a retail domain, an
accounting domain, a human resources domain, or many
other domains related to a common business feature or char-
acteristic.

In FIG. 1, and in the following examples, the term domain
is defined and applied with respect to the business object
metadata 104, in order to obtain or define desired domain-
specific metadata 106. In the present description, therefore,
the term domain should be understood to be an inclusive term,
which encompasses the traditional uses of the word domain,
asjust referenced, as well as uses which are more particular to
(e.g., defined in the context of) the system 100 of FIG. 1.

For example, if desired, the domain-specific metadata 106
may be specified to define domains in a manner which par-

US 9,058,176 B2

5

tially or completely overlaps with the various types of busi-
ness object categories referenced above. Additionally, or
alternatively, domains may be defined with respect to virtu-
ally any aspect of a given grouping of business objects. For
example, as described in more detail below, certain business
objects may include data fields which are language-depen-
dent, where such language dependency may not be specified
in an object-specific manner by the business object metadata
104. In another example, as also described in detail below,
certain business objects may benefit from particular types of
processing (e.g., may be particularly amenable to parallel
processing thereof), so that corresponding domains which
include such business objects may be specified as such.

In practice, then, a software developer, programmer, or
other user may wish to utilize the system 100 to design and
implement one or more new software applications (or
modify/upgrade/update an existing software application). In
this context, the term application should be understood to be
an inclusive term which encompasses any service, compo-
nent, module, or feature which may be executed by the runt-
ime engine 116 in conjunction with the metadata 104, 106, the
generated code 112, 114, and the application data 118.

As part of the efforts of designing and developing such an
application, the developer may utilize the code generator 102
to obtain object-specific and domain-specific code 112, 114.
More particularly, as referenced above and described in more
detail below, the code generator 102 may apply code tem-
plates 108 in a specified manner to the business object meta-
data 104, in order to obtain generated code 112. For example,
the generated code 112 may include object-specific applica-
tion programming interfaces (APIs).

In the example of FIG. 1, the code generator 102 may be
further configured to generate the domain-specific generated
code 114, through the use of the domain-specific code tem-
plates 110 and the domain-specific metadata 106. For
example, as shown, the code generator 102 may include an
object analyzer 120 which may be configured to analyze a
particular business object to be utilized in the context of a
particular application development, and to thereby determine
characteristics thereof which may relate to one or more
domains to which the particular object belongs.

Meanwhile, a domain analyzer 122 of the code generator
102 may be configured to analyze the domain-specific meta-
data 106, to thereby determine portions thereof which are
relevant to the object in question. Then, based on these out-
puts of the object analyzer 120 and the domain analyzer 122,
a template selector 124 may be configured to select from the
domain-specific code templates 110, for selection therefrom
of'any code templates needed to generate the domain-specific
generated code 114.

Specific examples of the domain-specific generated code
114 are provided below. For the sake of example, however,
and with reference to the description above, it may be appre-
ciated that certain domains of objects defined by the business
object metadata 104 include one or more fields containing
language-dependent values (e.g., country code values in
which abbreviations for a given country may vary, depending
on a language being used). In other examples, certain
domains of objects defined by the business object metadata
104 may benefit from the use of particular processing tech-
niques (e.g., parallel processing techniques using multiple
processing cores/threads). In these and other examples, the
code generator 102 may be configured to consult the domain-
specific metadata 106 and thereafter utilize appropriate ones
of the domain-specific code templates 110, to thereby gener-
ate particular APIs for inclusion within the domain-specific
generated code 114, such that the domain-specific generated

10

15

20

25

30

35

40

45

50

55

60

65

6

code 114 includes relevant methods and other interface
parameters/aspects which are suited to the domain in ques-
tion.

In implementing the system 100, one or more graphical
user interfaces (GUIs) may be utilized, as represented in the
example of FIG. 1 by a GUI 126. For example, the GUI 126
may be utilized during a design, development, and mainte-
nance of the business object’s metadata 104, as well as for a
design and implementation of the code template 108 for the
generation of the generated code 112 therewith. More spe-
cifically, for example, the GUI 126 may be utilized to design
the code templates 108, and may enable a software developer
or other user of the system 100 to select a desired code
template from the code templates 108, when generating the
generated code 112.

Further, the GUI 126 may be utilized to design and imple-
ment the domain-specific metadata 106 and the domain-spe-
cific code templates 110. For example, the domain-specific
metadata 106 may be constructed to include a domain-spe-
cific metadata model, which defines one or more domains for
which the domain-specific generated code 114 may be
desired. In this regard, it may be appreciated that the software
developer or other user of the system 100 may be provided
with great flexibility in configuring and defining specific
domains, as well as configuring and defining corresponding
metadata to be included within the domain-specific metadata
106.

Similarly in this regard, the GUI 126 may be utilized to
design and implement the domain-specific code templates
110 in a desired fashion. That is, the domain-specific code
templates 110 may be designed to include one or more code
templates which may be applicable to one or more associated
domains of business objects. In this way, it may be appreci-
ated that many different types of APIs may be generated with
respect to many different domains of business objects, while
simultaneously ensuring interoperability and capability of
the resulting domain-specific generated code 114 with all of
the business objects of the domain in question.

In the example of FIG. 1, the code generator 102, along
with the metadata 104, 106 and the templates 108, 110, is
illustrated as executing in the context of at least one comput-
ing device 128. As shown, and as would be appreciated, the at
least one computing device 128 may include or utilize at least
one processor 128A, as well as at least one computer readable
storage medium 128B. Of course, the at least one processor
128A and the computer readable storage medium 128B may
be understood to represent or include any known or future
examples of corresponding components that may be utilized
in the context of the at least one computing device 128B.
Further, it may be appreciated that any additional, or other-
wise conventional, components may be utilized in the context
of the at least one computer device 128, including, for
example, components related to power, communications,
input/output functions, and many other conventional features
and functions that would be understood by one of skill in the
art to be potentially implemented in the context of the at least
one computing device 128.

Moreover, although the at least one computing device 128
is illustrated in the example of FIG. 1 as a single computing
device, it may be understood that the at least one computing
device 128 may represent two or more computers in commu-
nication with one another. Therefore, it will also be appreci-
ated that any two or more of the components 102-110 and
120-124 may similarly be executed using some or all of the
two or more computing devices in communication with one
another. Conversely, it also may be appreciated that various
components illustrated as being external to the at least one

US 9,058,176 B2

7

computing device 128 may actually be executed therewith.
For example, the runtime engine 116 may be executed using
the at least one computing device 128.

Analogously, it may be appreciated that any two compo-
nents illustrated in the example of FIG. 1 may be executed
together as a single component. Conversely, any single com-
ponent of FIG. 1 may be understood to be executed using two
or more subcomponents.

Thus, FIG. 1 illustrates example implementations in which
the generated code 112, including the domain-specific gen-
erated code 114, may be generated in a straightforward, con-
figurable, convenient, automatic manner. Moreover, the gen-
erated code 112, including the domain-specific generated
code 114, may be obtained by a software developer or other
user of the system 100, even when such a user has relatively
limited knowledge with regard to how the application data
118 is structured and managed, because the model-driven
environment of the system 100 provides a layer of abstraction
which enables the user to obtain a desired result.

FIG. 2 is a flowchart 200 illustrating example operations
202-210 of the system 100 of FIG. 1. In the example of FIG.
2, operations 202-210 are illustrated as separate, sequential
operations. However, it may be appreciated that, in various
example implementations, the various operations 202-210
may be implemented in a partially or completely overlapping
or parallel manner. Moreover, it may be appreciated that the
operations 202-210 may be performed in an order different
than that shown and described, e.g., in a nested, iterative, or
looped fashion. Further, additional or alternative operations
may be included, and one or more operations may be partially
or completely omitted.

In the example of FIG. 2, an object metadata model which
defines structures and behaviors of objects adapted for use in
at least one software application may be determined (202).
For example, the code generator 102 may determine a busi-
ness object metadata model stored in the context of the busi-
ness object metadata 104.

At least one object instance of the object’s metadata model
may be determined (204). For example, the object analyzer
120 may be configured to identify one or more object
instances of the business object metadata 104. For example, a
software developer or other user of the system 100 may
specify desired or required objects for use in the at least one
software application being developed, and/or may specity
one or more features or functions desired to be included in the
at least one software application. Specific examples of such
object instances are referenced above, and described in more
detail below, e.g., with respect to FIG. 4.

A domain associated with the at least one object instance
may be determined (206). For example, the domain analyzer
122 may be configured to apply relevant aspects of the
domain-specific metadata 106, for association thereof with
the relevant, corresponding object instances. In other words,
for example, the domain analyzer 122 may determine that a
particular object instance belongs in, or is otherwise associ-
ated with, one or more domains, as specified by the domain-
specific metadata 106.

A domain-specific code template may be selected, based
on the domain (208). For example, the template selector 124
may be configured to select such a domain-specific code
template from the domain-specific code template 110, based
on a comparison of object characteristics received from the
object analyzer 120, domain characteristics received from the
domain analyzer 122, and on requirements of the at least one
software application (e.g., as provided by the software devel-
oper by way of the GUI 126). For example, the domain
analyzer 122 may identify inclusion of a specific object

5

10

15

20

25

30

35

40

45

55

60

65

8

instance within two or more domains. Then, the template
selector 124 may consider that only one of the identified
domains is relevant to the application requirements specified
by the software developer as being required for implementa-
tion of the associated software application to be executed by
the runtime engine 116, and may select a particular code
template accordingly.

A domain-specific application program interface (API)
configured to facilitate interactions of the at least one object
instance during execution of the at least one software appli-
cation may be generated, using the domain-specific code
template. For example, the code generator 102 may be con-
figured to generate the domain-specific generated code 114,
including/representing the just-referenced domain-specific
APIs. In this way, during execution of the at least one software
application by the runtime engine 116, each relevant object
instance may execute in a highly configurable, flexible, effi-
cient manner. Moreover, as may be appreciated, such execu-
tion may be obtained by the software developer in a straight-
forward, convenient manner.

FIG. 3 illustrates a portion of an example business object
meta-model, such as may be included within the business
object metadata 104. As described above, the use of a single
such business object meta-model in the context of a particular
execution framework including the runtime engine 116 pro-
vides for a uniform runtime behavior for all different catego-
ries of business objects.

In the example of FIG. 3, object names 302 are provided in
conjunction with associated descriptions 304. Various busi-
ness object nodes 306, which are illustrated as including
associated root elements 308, system message types 310, and
nodes 312. For example, various business object nodes 306
may refer to individual types of accounting documents, where
each such accounting document is associated with a root,
message types, and nodes. For example, one type of such
accounting documents may include a sales order, so that the
node 312 is associated therewith.

Then, as shown by the expanded node 312, each such node
may include various additional sub-components defining
associated structural and behavioral aspects of the node in
question. For example, as shown, the node 312 may include
various node elements 314, actions 316 that may be per-
formed by the node, associations 318 with other nodes or
other aspects of the business object meta-model, and queries
320 which may be executed by or against the node 312.

In the example, structural aspects of the business object
node 312 are primarily defined by the node 312, including
node elements 314 and associations 318. Individual instances
of the business object in question may be further structurally
defined using a node element 322, a node key 324, and an
association 326. For example, in the context of accounting
documents business objects including a sales order business
object, the node element 322 may define the various fields of
the sales order, such as, e.g., fields for including the price,
item description, or customer. Meanwhile, the node key 324
may refer to a value for a uniquely identifying an individual
sales order. The association 326 may refer to associations of
the sales order with other nodes and/or other business objects,
e.g., other sales orders, or associated business objects for
items for sale or purchasing customers.

Meanwhile, behavioral aspects are defined by, e.g., action
328, determination 330, and consistency validation 332. As
may be appreciated, generally speaking, action 328 may gen-
erally refer to operations that may be undertaken using, or in
conjunction with, the sales order document. Determination
330 may refer, for example, a node to suggest certain actions
in response to the occurrence of specific conditions. Further,

US 9,058,176 B2

9

consistency validation 332 may refer to behaviors associated
with ensuring consistency of the sales order with other,
related sales orders, and/or other related business objects.

Thus, it may be appreciated that FIG. 3 is generally
intended to represent an example of a portion of a business
object meta-model, for purposes of explanation of examples
of'operations ofthe system 100 of FIG. 1. Of course, it may be
appreciated that many other types of object meta-models may
be used in the context of the system 100 of FIG. 1, which are
not described here in detail, for the purposes of clarity and
conciseness. Similarly, such object meta-models, including
the example portion of the business object meta-model of
FIG. 3, may include varying types and levels of details in the
various manners in which they characterize structural and
behavioral aspects of associated objects. For example, as
illustrated in FIG. 3, such objects of components may include
message types, specializations and specialization types, sta-
tus variables, schemas, and exit techniques for exiting the
node in question. However, again for the sake of clarity and
conciseness, in the description of FIG. 3 and in the following
description of FIGS. 4-7, only those portions of the business
object meta-model of FIG. 3 and related meta-models which
are helpful in understanding the various features and func-
tions of the system 100 of FIG. 1 are provided in detail.

FIGS. 4-7 and associated description provide specific
example implementations of the system 100 and associated
operations of the flowchart 200 of FIGS. 1 and 2, respectively,
using the type of objects meta-model illustrated and
described with respect to FIG. 3. Specifically, FIG. 4 is a
block diagram of an example implementation of the system
100 of FIG. 1, which might utilize the type of object meta-
model of FIG. 3.

In the example of FIG. 4, domain-specific programming
interfaces 401 are generated using a metadata repository sys-
tem 402. As shown, the metadata repository system 402
includes a business object meta-model 404, which might
represent, e.g., the business object meta-model described
above with respect to FIGS. 1 and 3. As also may be appre-
ciated from the above description, the business object meta-
model 404 may thus specify various instances of business
objects, illustrated by way of example in FIG. 4 as including
a business partner business object 406, an accounting docu-
ment business object 408, an adjustment run business object
410, and a country business object 412.

As indicated by an arrow 405, the code generator 102 may
be configured to access the business object meta-model 404,
in order to determine relevant information regarding internal
data structures of the business object meta-model 404. For
example, in this way, the code generator 102 may determine
a data structure of relevant objects, including a number of
included fields, a number of included nodes, and the various
actions and queries which may be defined for the relevant
objects.

Thus, as indicated by the arrow 405, the code generator 102
may utilize the business object meta-model 404 to interpret
the business object instances 406-412 (and associated data) in
a manner that is useful for, and consistent with, generation of
the desired programming interfaces for the software applica-
tion being developed. For example, the various business
object instances 406-412 may include data structures which
may be interpreted differently depending on a nature of the
business object meta-model 404 in question. As a particular
example, programming interfaces may be generated for back-
end analysis and calculations, which may be very different
from programming interfaces generated for the same busi-
ness object instances and associated data structure, but in the
context of a graphical user interface that is being developed.

10

15

20

25

30

35

40

45

50

55

60

65

10

In the latter case then, the code generator 102 would access a
business object meta-model that is specific to defining and
interpreting business object data structures in the context of
graphical user interfaces.

Somewhat similarly, as indicated by an arrow 409, the code
generator 102 may be configured to determine object-specific
metadata information for each of the objects, e.g., 406, 408,
410, 412. In other words, as explained above, each of the
business objects 406, 408, 410, 412 are subsets of, or other-
wise including in, the overall business object meta-model
404, yet may also include object-specific information that is
not pertinent to other objects or categories of objects. There-
fore, the code generator 102 may retrieve such information
with respect to a particular object, in much the same way as,
and for the same reasons as, the code generator 102 extracts
information regarding the make up of the business object
meta-model 404 itself.

Additionally, as indicated by arrows 407, 411, the object
analyzer 120 of the code generator 102 (not specifically illus-
trated in the example of FIG. 4), may be configured, as
described above, to analyze meta information related to indi-
vidual objects or categories of objects, and to thereby extract
information which may be relevant to the domain-specific
metadata 106 (also not illustrated in the example of FIG. 4).
For example, any one or more of the objects 406, 408, 410,
412 may include fields or other information which may
potentially be related to many different domains. The object
analyzer 120 may utilize various techniques for identifying
and extracting such information.

For example, the domain-specific information may be
tagged as such within the relevant business object. Addition-
ally, or alternatively, as indicated by the arrow 407, the object
analyzer 120 may also utilize information derived from the
business object’s meta-model 404 as a whole, to use in iden-
tifying and extracting domain-specific information from
within one or more of the objects 406, 408, 410, 412. In the
latter case, for example, the business object meta-model 404
may specify various categories of business objects, so that the
code generator 102 may first determine a category and its
associated member business objects from the business object
meta-model 404, to thereby determine whether one of the
business objects 406, 408, 410, 412 is included in that cat-
egory.

Then, as described, the domain analyzer 122 may perform
operations associated with relating extracted object informa-
tion with specific domains. For example, the object analyzer
120 may identify and extract many different fields associated
with one or more domains. Then, the domain analyzer 122
may individually associate each such field with one or more
of the potentially matching domains.

Then, of these matched sets of objects and domains, the
template selector 124 may be configured to select those
objects and domains which are relevant to a software appli-
cation currently being developed, and to thereafter select one
or more domain-specific code templates 110 to be utilized in
providing the domain-specific programming interfaces 401.
For example, as illustrated, the business partner business
object 406 may be matched with a specific domain-specific
code template 110 to obtain a programming interface 414.
Similarly, business objects 408, 410, 412 may be matched
with corresponding domain-specific code templates 110 to
obtain corresponding programming interfaces 416, 418, 420,
respectively.

In this way, the code generator 102 may conveniently and
automatically provide the domain-specific programming
interfaces 401. Further, although not specifically illustrated in
the example of FIG. 4, it may be appreciated that the code

US 9,058,176 B2

11

generator 102 also may utilize the code templates 108 to
generate code 112 that is not domain-specific, e.g., using
information extracted in accordance with the arrows 407, 409
of FIG. 4. Thus, the systems of FIGS. 1 and 4 may be utilized
to generate a wide variety of domain-specific and non-do-
main-specific code, in a manner that is convenient and effi-
cient, and that ensures interoperability of all relevant business
objects in the context of the runtime engine 116.

FIG. 5 illustrates a portion of a node structure of an
accounting document business object 502, e.g., correspond-
ing to the business object 408 of FIG. 4. The accounting
document business object 502 of FIG. 5 may thus be under-
stood to represent an instance of the type of business object
meta-model 404 illustrated above with respect to FIG. 3. As
such, due to the existence of the same underlying business
object meta-model, the code generator 102 may generate
corresponding programming interfaces using the same pat-
tern across all existing domains. FIG. 5 illustrates a portion of
the accounting document business object 502 from which
such programming interfaces may be generated.

For example, the accounting document business object 502
structurally defines business object nodes root 504 and item
506 (as well as associations there between). As may be under-
stood, the root node 504 may include header information of
the accounting document in question, and represents header
information of a specific accounting document (e.g., a sales
order). Meanwhile, the item node 506 may include specific
fields identifying attributes of the accounting document (e.g.,
a company identifier or document identifier). Thus, as an
instance of the overall business object meta-model 504, the
accounting document business object 502 includes, in perti-
nent part, two instances of node types, each representing
entries of a node in the overall meta-model 404.

Thus, the generated code 112 provided by the code gen-
erator 102 may include programming interfaces designed to
facilitate interactions between the accounting document busi-
ness object 502 and other components of a software applica-
tion being developed for execution within the runtime engine
116. By way of example, a programming interface “class
ROOT, method RETRIEVE” may be generated for the pur-
pose of retrieving data of all node elements for a given list of
root instances. As another example, a programming interface
“class ROOT, method TO_ITEM” may be generated to
retrieve data of all associated items for a given list of root
instances. As a final example, a programming interface “class
ITEM, method RETRIEVE” may be generated to retrieve
data of all node elements for a given list of item instances.

In the latter case, by way of a more specific example, it may
be appreciated from the above description that the code gen-
erator 102 may utilize certain metadata of the business object
meta-model 404 to generate the method “RETRIEVE” to
provide data for the business object node “ITEM” 506. Spe-
cifically, in the example, each node instance may be identified
by a unique key called NODE_ID. Then, the purpose of
“RETRIEVE” method is to retrieve all data of the business
object node for a given list of NODE_IDs. Therefore, an
expected class and signature may be represented in the
example of code portion 1:

Code Portion 1

CLASS cl__item DEFINITION.
PUBLIC SECTION.
METHODS retrieve
IMPORTING

node__ids TYPE node_id_ tab

20

45

50

60

65

12

-continued

Code Portion 1

EXPORTING
messages TYPE message__tab
RETURNING
VALUE(data) TYPE item__tab.
METHODS ...

ENDCLASS.

In this regard, during the generation of the types of pro-
gramming interfaces referenced above, the business object
meta-model 404 is evaluated, and for each business object
node, a separate class CL_<node_name> may be generated.
This information may be provided as element NAME of node
NODE in the business object meta-model 404. The account-
ing object business object 502 of FIG. 5 provides the above-
described specific example in which such nodes include the
root node 504 and the item node 506.

Then, the data container returned by the method
RETRIEVE is statically typed, based on the model node data
type: TYPE<typing data type>. Thus, this information may
be provided as the element TYPING DATA_TYPE of
NODE in the business object meta-model 404.

FIG. 6 illustrates a portion of a business object meta-model
associated with an adjustment run business object 602, cor-
responding to the adjustment run business object 410 of FI1G.
4. More particularly, as shown, FIG. 6 illustrates a portion of
the business object meta-model related to a fixed asset depre-
ciation run.

In general, as generally known and as referenced above,
such adjustment run business objects generally refer to, or
include, large-scale processing of calculations that, by their
nature, are individually performed with respect to corre-
sponding business object instances and/or individual
attributes or aspects thereof. For example, in the example of
FIG. 6, fixed asset depreciation adjustment runs may be per-
formed to calculate a specific amount of depreciation to be
associated with each of a large number of assets owned by an
enterprise. For example, such calculations may be required to
be performed on an annual or semi-annual basis, e.g., for tax
purposes.

In the example of FIG. 6, and analogously to the examples
of FIGS. 3 and 5, the portion of the fixed asset depreciation
run business object 602 includes a rootnode 604 and a param-
eters node 606. Thus, as described above with respect to FIG.
5, the root node 604 may correspond generally to header
information associated with instances of the business object
602, while the parameters node 606 may include data relevant
to business asset(s) for which depreciation will be calculated,
and/or relevant parameters to be used in the depreciation
calculations.

Further, as already described, mass data run objects such as
the object 602 may advantageously be processed in parallel.
For example, a second runtime engine may be used in con-
junction with the runtime engine 116 in order to execute such
parallel processing. In order to schedule mass data processing
in this regard, a pre-defined action “execute” 608 may be
included within the business object 602.

Thus, as already described above with respect to FIG. 5, the
code generator 102 may consider the structure ofthe modeled
business object 602, and generate the generated code 112 that
is independent of any specific domain. For example, the code
generator 102 might provide a programming interface “class
ROOT, method RETRIEVE,” to get the data of all node ele-
ments for a given list of root instances. Another example of
such a programming interface might include “class ROOT,

US 9,058,176 B2

13
method TO_PARAMETERS,” to get the data of all associated
items for a given list of root instances. As a third and final
example, a programming interface “class PARAMETERS,
method RETRIEVE,” may be created and utilized to retrieve
data of all node elements for a given list of parameter
instances.

Furthermore, the code generator 102 may be further con-
figured to provide the domain-specific generated code 114.
For example, as may be appreciated from the above descrip-
tions of FIGS. 1 and 4, the code generator 102, or, more
specifically, the object analyzer 120 may be configured to
analyze the business object 602 and identify, among other
characteristics, inclusion of the execute action 608. Mean-
while, the domain analyzer 122 may be configured to match
the execute action 608 with domain-specific metadata 106 in
order to associate the business object 602 with one or more
domains defined to include such mass data run objects.
Finally, the template selector 104 may be configured to select
the thus-matched execute action 608 and associated domain
with one or more of the domain-specific code templates 110.

In particular, the domain-specific code template 110 may
be configured to enable the code generator 102 to generate
one or more programming interfaces for conducting parallel
processing of the application data 118 during execution of an
associated software application by two or more runtime
engines. For example, such domain-specific generated code
may include a programming interface “class ROOT, method
START_PARALLEL_PROCESSING.” As may be appreci-
ated, this programming interface may be generated automati-
cally by the code generator 102, merely by virtue of inclusion
of the business object 602 within the development process
and associated software application. In this way, the devel-
oper of the software application may be required to have little
orno knowledge of a manner in which the business object 602
is optimally included within the software application.

FIG. 7 illustrates an example of a portion of a business
configuration object, and, more specifically, illustrates a por-
tion of a country business object 702. In the example, it is
assumed that a primary characteristic of business configura-
tion objects such as the country object 702 include a need to
provide read-only access during application runtime. More-
over, data access may be required to be performed in a very
efficient manner which minimizes resource consumption.
Further, access of the same data instances may be required
frequently within one transaction, so that suitable buffering
strategies should be considered.

In addition to these characteristics, such business configu-
ration objects may benefit from pre-defined data access tasks/
methods. For example, a retrieval of language-dependent
code value names may be required, such as in the case of the
country business object 702 which may include language-
dependent text. Somewhat similarly, existence checks for
existence of code values within the configuration business
objects may represent an additional typical use case.

Thus, as described above with respect to FIG. 6, the code
generator 102 may be configured to generate both the gener-
ated code 112 which is not domain-specific, as well as the
domain-specific generated code 114 for a domain defined
with respect to business objects such as the country business
object 702 of FIG. 7. In the former case, for example, a
programming interface “class ROOT, method RETRIEVE,”
may be defined to retrieve the data of all node elements for a
given list of root instances.

Furthermore, specifically for the domain defined with
respect to the business configuration object such as the coun-
try business object 702 of FIG. 7, the domain-specific gener-
ated code 114 may include a programming interface “class

5

10

20

25

30

35

40

45

50

55

60

65

14

ROOT, method EXIST,” which provides the above-refer-
enced functionality of checking whether a given code value
exists or not. As a further example, the domain-specific gen-
erated code 114 may include a programming interface, “class
ROOT, method GET_TEXT,” which is configured to retrieve
language-dependent text for a given list of root instances.

Implementations of the various techniques described
herein may be implemented in digital electronic circuitry, or
in computer hardware, firmware, software, or in combina-
tions of them. Implementations may implemented as a com-
puter program product, i.e., a computer program tangibly
embodied in an information carrier, e.g., in a machine-read-
able storage device or in a propagated signal, for execution by,
or to control the operation of, data processing apparatus, e.g.,
a programmable processor, a computer, or multiple comput-
ers. A computer program, such as the computer program(s)
described above, can be written in any form of programming
language, including compiled or interpreted languages, and
can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer
program can be deployed to be executed on one computer or
on multiple computers at one site or distributed across mul-
tiple sites and interconnected by a communication network.

Method steps may be performed by one or more program-
mable processors executing a computer program to perform
functions by operating on input data and generating output.
Method steps also may be performed by, and an apparatus
may be implemented as, special purpose logic circuitry, e.g.,
an FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. Elements of a computer may
include at least one processor for executing instructions and
one or more memory devices for storing instructions and data.
Generally, a computer also may include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Information carriers
suitable for embodying computer program instructions and
data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The pro-
cessor and the memory may be supplemented by, or incorpo-
rated in special purpose logic circuitry.

To provide for interaction with a user, implementations
may be implemented on a computer having a display device,
e.g., a cathode ray tube (CRT) or liquid crystal display (LCD)
monitor, for displaying information to the user and a key-
board and a pointing device, e.g., a mouse or a trackball, by
which the user can provide input to the computer. Other kinds
of'devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input.

Implementations may be implemented in a computing sys-
tem that includes a back-end component, e.g., as a data server,
or that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client

US 9,058,176 B2

15

computer having a graphical user interface or a Web browser
through which a user can interact with an implementation, or
any combination of such back-end, middleware, or front-end
components. Components may be interconnected by any
form or medium of digital data communication, e.g., a com-
munication network. Examples of communication networks
include a local area network (LAN) and a wide area network
(WAN), e.g., the Internet.

While certain features of the described implementations
have been illustrated as described herein, many modifica-
tions, substitutions, changes and equivalents will now occur
to those skilled in the art. It is, therefore, to be understood that
the appended claims are intended to cover all such modifica-
tions and changes as fall within the scope of the embodi-
ments.

What is claimed is:

1. A system including instructions recorded on a non-
transitory computer readable storage medium and executable
by at least one processor, the system comprising:

a code generator configured to cause the at least one pro-
cessor to determine an object metadata model which
defines structures and behaviors of objects adapted for
use in at least one software application being executed
using a runtime engine, and which fails to define a
domain-specific application program interface (API) for
a domain associated with the at least one software appli-
cation; the code generator including
an object analyzer configured to determine object prop-

erties of a plurality of object instances of the object
metadata model,

a domain analyzer configured to determine the domain
as being associated with the plurality of object
instances, based on the object properties, and

a template selector configured to select a domain-spe-
cific code template based on the domain,

wherein the code generator is further configured to cause
the at least one processor to generate the domain-spe-
cific API configured to facilitate interactions of the plu-
rality of object instances during subsequent execution of
the at least one software application using the runtime
engine, using the domain-specific code template.

2. The system of claim 1, wherein the object analyzer is
configured to interpret the object properties based on the
object metadata model.

3. The system of claim 1, wherein the domain analyzer is
configured to utilize a domain-specific meta-model to deter-
mine the domain associated with the plurality of object
instances.

4. The system of claim 1, wherein the domain analyzer is
configured to utilize object categories defined by the object
metadata model to determine the domain associated with the
plurality of object instances.

5. The system of claim 1, wherein the template selector is
configured to compare the object properties of the plurality of
object instances as provided by the object analyzer with the
domain as provided by the domain analyzer to select the
domain-specific code template.

6. The system of claim 1, wherein the template selector is
configured to select the domain-specific code template, based
on application requirements of the at least one software appli-
cation.

7. A computer-implemented method for causing at least
one processor to execute instructions recorded on a computer-
readable storage medium, the method comprising:

determining an object metadata model which defines struc-
tures and behaviors of objects adapted for use in at least
one software application being executed using a runtime

10

15

20

25

30

35

40

45

50

55

60

65

16

engine, and which fails to define a domain-specific
application program interface (API) for a domain asso-
ciated with the at least one software application;

determining object properties of a plurality of object
instances of the object metadata model;

determining the domain as being associated with the plu-

rality of object instances, based on the object properties;
selecting a domain-specific code template based on the
domain; and

generating the domain-specific API configured to facilitate

interactions of the plurality of object instances during
subsequent execution of the at least one software appli-
cation using the runtime engine, using the domain-spe-
cific code template.

8. The method of claim 7, wherein the determining the
domain associated with the plurality of object instances com-
prises:

utilizing a domain-specific meta-model to determine the

domain associated with the plurality of object instances.

9. The method of claim 7, wherein the determining the
domain associated with the plurality of object instances com-
prises:

utilizing object categories defined by the object metadata

model to determine the domain associated with the plu-
rality of object instances.

10. The method of claim 7, wherein the selecting the
domain-specific code template based on the domain com-
prises:

comparing characteristics of the plurality of object

instances with the domain to select the domain-specific
code template.

11. The method of claim 7, wherein the selecting the
domain-specific code template based on the domain com-
prises:

selecting the domain-specific code template, based on

application requirements of the at least one software
application.
12. A computer program product, the computer program
product being tangibly embodied on a non-transitory com-
puter-readable medium and comprising instructions that,
when executed, are configured to cause at least one processor
to:
determine an object metadata model which defines struc-
tures and behaviors of objects adapted for use in at least
one software application being executed using a runtime
engine, and which fails to define a domain-specific
application program interface (API) for a domain asso-
ciated with the at least one software application;

determine object properties of a plurality of object
instances of the object metadata model;

determine the domain as being associated with the plurality

of object instances, based on the object properties;
select a domain-specific code template based on the
domain; and

generate the domain-specific API configured to facilitate

interactions of the plurality of object instances during
subsequent execution of the at least one software appli-
cation using the runtime engine, using the domain-spe-
cific code template.

13. The computer program product of claim 12, wherein
the instructions, when executed, are configured to utilize a
domain-specific meta-model to determine the domain asso-
ciated with the plurality of object instances.

14. The computer program product of claim 12, wherein
the instructions, when executed, are configured to compare
the object properties of the plurality of object instances with
the domain to select the domain-specific code template.

US 9,058,176 B2

17

15. The computer program product of claim 12, wherein
the instructions, when executed, are configured to select the
domain-specific code template, based on application require-
ments of the at least one software application.

16. The system of claim 1, in which the object metadata
model includes defined classes of the objects, and wherein the
domain is not defined as such within the defined classes.

17. The system of claim 1, wherein the code generator is
configured to generate, in addition to the domain-specific
API, an object-specific API that is defined in terms of the
object metadata model and that also facilitates execution of
the at least one software application.

#* #* #* #* #*

18

